Development and Application of Matrix Variate Restricted Boltzmann Machine
نویسندگان
چکیده
منابع مشابه
Mixed-Variate Restricted Boltzmann Machines
Modern datasets are becoming heterogeneous. To this end, we present in this paper MixedVariate Restricted Boltzmann Machines for simultaneously modelling variables of multiple types and modalities, including binary and continuous responses, categorical options, multicategorical choices, ordinal assessment and category-ranked preferences. Dependency among variables is modeled using latent binary...
متن کاملTensor-Variate Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are an important class of latent variable models for representing vector data. An under-explored area is multimode data, where each data point is a matrix or a tensor. Standard RBMs applying to such data would require vectorizing matrices and tensors, thus resulting in unnecessarily high dimensionality and at the same time, destroying the inherent higher-ord...
متن کاملMatrix-Variate Beta Generator - Developments and Application
Matrix-variate beta distributions are applied in different fields of hypothesis testing, multivariate correlation analysis, zero regression, canonical correlation analysis and etc. A methodology is proposed to generate matrix-variate beta generator distributions by combining the matrix-variate beta kernel with an unknown function of the trace operator. Several statistical characteristics, exten...
متن کاملSubspace Restricted Boltzmann Machine
The subspace Restricted Boltzmann Machine (subspaceRBM) is a third-order Boltzmann machine where multiplicative interactions are between one visible and two hidden units. There are two kinds of hidden units, namely, gate units and subspace units. The subspace units reflect variations of a pattern in data and the gate unit is responsible for activating the subspace units. Additionally, the gate ...
متن کاملLatent Patient Profile Modelling and Applications with Mixed-Variate Restricted Boltzmann Machine
Efficient management of chronic diseases is critical in modern health care. We consider diabetes mellitus, and our ongoing goal is to examine how machine learning can deliver information for clinical efficiency. The challenge is to aggregate highly heterogeneous sources including demographics, diagnoses, pathologies and treatments, and extract similar groups so that care plans can be designed. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3012603